.. currentmodule:: altair .. _user-guide-compound: Compound Charts: Layer, HConcat, VConcat, Repeat, Facet ------------------------------------------------------- Along with the basic :class:`Chart` object, Altair provides a number of compound plot types that can be used to create stacked, layered, faceted, and repeated charts. They are summarized in the following tables: ====================== =============================== =================== ====================== class functional form operator form reference ====================== =============================== =================== ====================== :class:`LayerChart` ``alt.layer(chart1, chart2)`` ``chart1 + chart2`` :ref:`layer-chart` :class:`HConcatChart` ``alt.hconcat(chart1, chart2)`` ``chart1 | chart2`` :ref:`hconcat-chart` :class:`VConcatChart` ``alt.vconcat(chart1, chart2)`` ``chart1 & chart2`` :ref:`vconcat-chart` ====================== =============================== =================== ====================== ====================== ============================= ====================== class method form reference ====================== ============================= ====================== :class:`RepeatChart` ``chart.repeat(row, column)`` :ref:`repeat-chart` :class:`FacetChart` ``chart.facet(row, column)`` :ref:`facet-chart` ====================== ============================= ====================== .. _layer-chart: Layered Charts ~~~~~~~~~~~~~~ Layered charts allow you to overlay two different charts on the same set of axes. They can be useful, for example, when you wish to draw multiple marks for the same data; for example: .. altair-plot:: import altair as alt from altair.expr import datum from vega_datasets import data stocks = data.stocks.url base = alt.Chart(stocks).encode( x='date:T', y='price:Q', color='symbol:N' ).transform_filter( datum.symbol == 'GOOG' ) base.mark_line() + base.mark_point() Here we have used the ``+`` operator to create a layered chart; alternatively we could use the ``alt.layer`` function, which accepts as its arguments any number of charts: .. altair-plot:: alt.layer( base.mark_line(), base.mark_point(), base.mark_rule() ).interactive() The output of both of these patterns is a :class:`LayerChart` object, which has properties and methods similar to the :class:`Chart` object. Order of Layers ^^^^^^^^^^^^^^^ In a layered chart, the order of layers is determined from the order in which they are specified. For example, when creating a chart using ``layer1 + layer2`` or ``alt.layer(layer1, layer2)``, ``layer1`` will appear below ``layer2``, and ``layer2`` may obscure the marks of ``layer1``. For example, consider the following chart where we plot points on top of a heat-map: .. altair-plot:: import altair as alt from vega_datasets import data source = data.movies.url heatmap = alt.Chart(source).mark_rect().encode( alt.X('IMDB_Rating:Q', bin=True), alt.Y('Rotten_Tomatoes_Rating:Q', bin=True), alt.Color('count()', scale=alt.Scale(scheme='greenblue')) ) points = alt.Chart(source).mark_circle( color='black', size=5, ).encode( x='IMDB_Rating:Q', y='Rotten_Tomatoes_Rating:Q', ) heatmap + points If we put the two layers in the opposite order, the points will be drawn first and will be obscured by the heatmap marks: .. altair-plot:: points + heatmap If you do not see the expected output when creating a layered chart, make certain that you are ordering the layers appropriately. .. _hconcat-chart: Horizontal Concatenation ~~~~~~~~~~~~~~~~~~~~~~~~ Displaying two plots side-by-side is most generally accomplished with the :class:`HConcatChart` object, which can be created using the :class:`hconcat` function or the ``|`` operator. For example, here is a scatter-plot concatenated with a histogram showing the distribution of its points: .. altair-plot:: import altair as alt from vega_datasets import data iris = data.iris.url chart1 = alt.Chart(iris).mark_point().encode( x='petalLength:Q', y='petalWidth:Q', color='species:N' ).properties( height=300, width=300 ) chart2 = alt.Chart(iris).mark_bar().encode( x='count()', y=alt.Y('petalWidth:Q', bin=alt.Bin(maxbins=30)), color='species:N' ).properties( height=300, width=100 ) chart1 | chart2 This example uses the ``|`` operator, but could similarly have been created with the :func:`hconcat` function: .. altair-plot:: alt.hconcat(chart1, chart2) The output of both of these is an :class:`HConcatChart` object, which has many of the same top-level methods and attributes as the :class:`Chart` object. Finally, keep in mind that for certain types of horizontally-concatenated charts, where each panel modifies just one aspect of the visualization, repeated and faceted charts are more convenient (see :ref:`repeat-chart` and :ref:`facet-chart` for more explanation). .. _vconcat-chart: Vertical Concatenation ~~~~~~~~~~~~~~~~~~~~~~ Similarly to :ref:`hconcat-chart` above, Altair offers vertical concatenation via the :func:`vconcat` function or the ``&`` operator. For example, here we vertically-concatenate two views of the same data, with a ``brush`` selection to add interaction: .. altair-plot:: import altair as alt from vega_datasets import data sp500 = data.sp500.url brush = alt.selection(type='interval', encodings=['x']) upper = alt.Chart(sp500).mark_area().encode( x=alt.X('date:T', scale={'domain': brush.ref()}), y='price:Q' ).properties( width=600, height=200 ) lower = upper.properties( height=60 ).add_selection(brush) alt.vconcat(upper, lower) Note that we could just as well have used ``upper & lower`` rather than the more verbose ``alt.vconcat(upper, lower)``. As with horizontally-concatenated charts, keep in mind that for concatenations where only one data grouping or encoding is changing in each panel, using :ref:`repeat-chart` or :ref:`facet-chart` can be more efficient. .. _repeat-chart: Repeated Charts ~~~~~~~~~~~~~~~ The :class:`RepeatChart` object provides a convenient interface for a particular type of horizontal or vertical concatenation, in which the only difference between the concatenated panels is modification of *one or more encodings*. For example, suppose you would like to create a multi-panel scatter-plot to show different projections of a multi-dimensional dataset. Let's first create sucha chart manually using ``hconcat`` and ``vconcat``, before showing how ``repeat`` can be used to build the chart more efficiently: .. altair-plot:: import altair as alt from vega_datasets import data iris = data.iris.url base = alt.Chart().mark_point().encode( color='species:N' ).properties( width=200, height=200 ).interactive() chart = alt.vconcat(data=iris) for y_encoding in ['petalLength:Q', 'petalWidth:Q']: row = alt.hconcat() for x_encoding in ['sepalLength:Q', 'sepalWidth:Q']: row |= base.encode(x=x_encoding, y=y_encoding) chart &= row chart In this example, we explicitly loop over different x and y encodings to create a 2 x 2 grid of charts showing different views of the data. The code is straightforward, if a bit verbose. The :class:`RepeatChart` pattern, accessible via the :meth:`Chart.repeat` method, makes this type of chart a bit easier to produce: .. altair-plot:: import altair as alt from vega_datasets import data iris = data.iris.url alt.Chart(iris).mark_point().encode( alt.X(alt.repeat("column"), type='quantitative'), alt.Y(alt.repeat("row"), type='quantitative'), color='species:N' ).properties( width=200, height=200 ).repeat( row=['petalLength', 'petalWidth'], column=['sepalLength', 'sepalWidth'] ).interactive() The :meth:`Chart.repeat` method is the key here: it lets you specify a set of encodings for the row and/or column which can be referred to in the chart's encoding specification using ``alt.repeat('row')`` or ``alt.repeat('column')``. Currently ``repeat`` can only be specified for rows and column (not, e.g., for layers) and the target can only be encodings (not, e.g., data transforms) but there is discussion within the Vega-Lite community about making this pattern more general in the future. .. _facet-chart: Faceted Charts ~~~~~~~~~~~~~~ Like repeated charts, Faceted charts provide a more convenient API for creating multiple views of a dataset for a specific type of chart: one where each panel contains a different subset of data. We could do this manually using a filter transform along with a horizontal concatenation: .. altair-plot:: import altair as alt from altair.expr import datum from vega_datasets import data iris = data.iris.url base = alt.Chart(iris).mark_point().encode( x='petalLength:Q', y='petalWidth:Q', color='species:N' ).properties( width=160, height=160 ) chart = alt.hconcat() for species in ['setosa', 'versicolor', 'virginica']: chart |= base.transform_filter(datum.species == species) chart As with the manual approach to :ref:`repeat-chart`, this is straightforward, if a bit verbose. Using ``alt.facet`` it becomes a bit cleaner: .. altair-plot:: alt.Chart(iris).mark_point().encode( x='petalLength:Q', y='petalWidth:Q', color='species:N' ).properties( width=180, height=180 ).facet( column='species:N' ) For simple charts like this, there is also a ``column`` encoding channel that can give the same results: .. altair-plot:: alt.Chart(iris).mark_point().encode( x='petalLength:Q', y='petalWidth:Q', color='species:N', column='species:N' ).properties( width=180, height=180 ) The advantage of using ``alt.facet`` is that it can create faceted views of more complicated compound charts. For example, here is a faceted view of a layered chart with a hover selection: .. altair-plot:: hover = alt.selection_single(on='mouseover', nearest=True, empty='none') base = alt.Chart().encode( x='petalLength:Q', y='petalWidth:Q', color=alt.condition(hover, 'species:N', alt.value('lightgray')) ).properties( width=180, height=180, ) chart = base.mark_point().add_selection( hover ) chart += base.mark_text(dy=-5).encode( text = 'species:N', opacity = alt.condition(hover, alt.value(1), alt.value(0)) ) chart.facet( column='species:N', data=iris ) Notice that we specify the data within the facet here; this is important, because the top-level facet needs access to this data in order to know how to encode the column. Though each of the above examples have faceted the data across columns, faceting across rows (or across rows *and* columns) is supported as well. .. _compound-charts-data: Advanced: Compound Charts and Data Specification ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When using compound charts, it is possible to specify data in multiple places, and if you are using large datasets it can be pertinent to think about where you specify data. For example, suppose you are creating a layered plot with a dataset marked by both points and lines: .. altair-plot:: :chart-var-name: chart import altair as alt import pandas as pd data = pd.DataFrame({'x': [0, 1, 2], 'y': [0, 1, 0]}) base = alt.Chart(data).encode(x='x', y='y') chart = base.mark_point() + base.mark_line() The visualization turns out as expected, but if you examine the JSON specification generated by this chart, you see that the data is specified twice -- one time for each layer: .. code-block:: python >>> import pprint >>> pprint.pprint(chart.to_dict()) {'$schema': 'https://vega.github.io/schema/vega-lite/v2.json', 'config': {'view': {'height': 300, 'width': 400}}, 'layer': [{'data': {'values': [{'x': 0, 'y': 0}, {'x': 1, 'y': 1}, {'x': 2, 'y': 0}]}, 'encoding': {'x': {'field': 'x', 'type': 'quantitative'}, 'y': {'field': 'y', 'type': 'quantitative'}}, 'mark': 'point'}, {'data': {'values': [{'x': 0, 'y': 0}, {'x': 1, 'y': 1}, {'x': 2, 'y': 0}]}, 'encoding': {'x': {'field': 'x', 'type': 'quantitative'}, 'y': {'field': 'y', 'type': 'quantitative'}}, 'mark': 'line'}]} This happens because our top chart contains two layers, each with its own data explicitly specified. In the compound charts created by methods in this section, sub-charts are aware of the data defined in their parents, and so you can make certain the data is defined only once by leaving it out of the individual layers, and instead defining it once the compound chart is created: .. altair-plot:: :chart-var-name: chart base = alt.Chart().encode(x='x', y='y') chart = alt.layer( base.mark_point(), base.mark_line(), data=data ) When the cart is created this way, the spec contains only one copy of the data, at the top level: .. code-block:: python >>> pprint.pprint(chart.to_dict()) {'$schema': 'https://vega.github.io/schema/vega-lite/v2.json', 'config': {'view': {'height': 300, 'width': 400}}, 'data': {'values': [{'x': 0, 'y': 0}, {'x': 1, 'y': 1}, {'x': 2, 'y': 0}]}, 'layer': [{'encoding': {'x': {'field': 'x', 'type': 'quantitative'}, 'y': {'field': 'y', 'type': 'quantitative'}}, 'mark': 'point'}, {'encoding': {'x': {'field': 'x', 'type': 'quantitative'}, 'y': {'field': 'y', 'type': 'quantitative'}}, 'mark': 'line'}]} For small datasets, this kind of consideration is not particularly important. But as datasets grow larger, thinking about how your data is defined can lead to much more efficient plot specifications.